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ABSTRACT: The primary hydroxy groups of head-
tail and head-head bis(sugar)-based crown ethers (1
and 3, respectively) were acylated by (EtO)2P(O)Cl and
Ph2P(O)Cl in a selective manner. Cation binding abil-
ity of the bis-phosphorylated and phosphinylated ma-
crocycles (2 and 4) was evaluated by the picrate ex-
traction method. Introduction of the P-moieties led to
increase of the extraction ability without significant
selectivity. � 2000 John Wiley & Sons, Inc. Hetero-
atom Chem 11:267–270, 2000

INTRODUCTION

It is well known that the complex forming ability of
macrocycles can be modified by introduction of a
side chain to the ring. A number of phosphorylated
crown ethers along with derivatives with exocyclic
P-function(s) on the anellated ring have been de-
scribed [1–3]. Our earlier research was focused on
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the synthesis of different azacrown ethers, including
sugar-anellated azacrowns with phosphorus con-
taining side-chains [4–6]. These lariat-ethers were
found to display a significant increase in the complex
forming ability and in the selectivity toward the dif-
ferent cations. The sugar-based macrocycles are po-
tential catalysts in enantioselective syntheses [6]. In
this article, we disclose our results on the synthesis,
spectral characterization, and cation-binding ability
of bis(glucose)-based crown ethers containing exo-
cyclic P-functions on the sugar moiety.

RESULTS AND DISCUSSION

Reaction of head-tail type bis (D-glucose)-based
crown 1 [7] with diethylphosphoryl chloride and
with diphenylphosphinyl chloride in pyridine at
room temperature furnished products 2a and 2b, re-
spectively (Scheme 1). A similar acylation of head-
head type sugar-anellated crown 3 [8] with the afore-
mentioned reagents led to products 4a and 4b
(Scheme 2). As it could be expected, the introduction
of the P-functions was completely selective; only the
primary hydroxy groups were involved in the acyla-
tion. Products 2a,b and 4a,b did not survive column
chromatography, but their solutions could be filtered
fast through a thin silica layer to afford the modified
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SCHEME 1
SCHEME 2

crown ethers in an 81–85% yield, in a purity of 93 to
96%. Compounds 2a,b and 4a,b were characterized
by 31P, 13C, and 1H NMR, as well as by fast atom bom-
bardment (FAB) mass spectroscopy. The 13C NMR
spectral data are collected in Table 1. The assign-
ments were confirmed by spectra obtained by the At-
tached Proton Test technique. The signals of the car-
bon atoms of both the glucose and the polyether
rings, as well as those of the P-moieties, appeared in
the expected region. The FAB measurements con-
firmed the molecular weights in all instances, but the
[M�H] peaks were of low intensity. The P-function-
alized macrocycles (2 and 4) were found to undergo
intensive deacylation under the circumstances of
FAB mass spectroscopy. Due to this instability, the
elemental composition could be confirmed by HR-
FAB mass spectroscopy only in one case (2b).

We wished to study the effect of the phosphorus-
containing substituents on the complexing ability of
the macrocycles. The cation binding ability of the
bisphosphorylated (2a,4a) and phosphinylated
(2b,4b) glucose-based crown ethers was character-
ized by the extracting ability (EA) of picrate salts
(lithium, sodium, potassium, and ammonium pic-
rate) from water into dichloromethane by the

method of Kimura et al. [9]. Although these values
may not accurately reflect the complexation ability
in homogeneous solution, they still can be regarded
as good indicators of the cation binding ability. A
higher value indicates a better phase-transfer capa-
bility of the crown compounds. The experimental
data are shown in Table 2. The error of the deter-
mination of picrates was � 3%. As a comparison,
the properties of unsubstituted crown ethers (1, 3)
and the parent macrocycles bearing side arms with
other heteroatoms (5, 6) were also included [10]. As
can be seen, introduction of the P(O)(OEt)2 (2a, 4a)
and P(O)Ph2 (2b, 4b) functions resulted in a signifi-
cant increase in the extracting ability (65–88%) for
all of the cations examined, as compared to the un-
substituted crown ethers 1 and 3 (EA � 4–14%), or
to the compounds having tosyl groups (5, EA � 7–
21%) and acetyl groups (6, EA � 6–15%). A probable
explanation is that, on the one hand, the phosphoryl
groups may increase the lipophilicity. On the other
hand, the complex froming ability of compounds 2
and 4 may be increased due to secondary interac-
tions between the P-moiety and the guest ion. No
significant difference seemed to exist between the
complex forming ability of the “head-foot” and
“head-head” isomers (2a, 2b, and 4a, 4b, respec-
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TABLE 1 13C NMR Spectroscopic Data of Compounds 2a,b and 4a,b in CDCl3 Solution

dC(JPC)

Compound C1 C2 C3 C4 C5 C6 C7 C8 C9 C10 C1� C2� C3� C4� OMe

2a 97.3 80.6 81.4 71.6 69.4 72.5 71.2 70.2 70.1 60.9 62.7
(5.8)

16.0
(7.1)

— — 54.8

2b 97.6 80.6 81.6 72.0 69.7 72.5 71.1 70.4 70.2 61.0 135.5
(138.8)

128.2
(13.8)

131.1 131.2 54.9

4a 97.5 80.1 81.5 71.7 69.5 72.2 70.7 70.5 70.4 60.8 62.6
(5.7)

16.1
(7.1)

— — 54.8

4b 97.7 80.3 81.6 71.8 69.7 72.4 70.9 70.7 70.5 61.1 135.4
(137.0)

128.2
(13.1)

131.1
(10.4)

131.2 54.9

TABLE 2 Extraction of Alkali Metal and Ammonium Picra-
tesa

Extractability (%)b

Comp. R � Na� K� �NH4

1c H 7 4 7 13
3c H 6 5 6 14
2a P(O)(OEt)2 73 88 88 79
2b P(O)Ph2 69 70 72 82
4a P(O)(OEt)2 73 85 88 80
4b P(O)Ph2 72 65 71 79
5c SO2PhCH3(p) 7 2 15 21
6c COCH3 6 12 15 14
aTemperature 20�C; aqueous phase (5 mL); [picrate] � 5 � 10�3 M;
organic phase (CH2Cl2, 5 mL); [crown ether] � 1 � 10�2 M.
bDefined as percentage of picrate extracted into the organic phase,
determined by UV spectroscopy [9].
cSee Ref. [10].

tively). The phosphinic derivatives (2a, 4a) were
found to form somewhat stronger complexes (73–
88%) with the cations examined than the phosphates
(2b, 4b, 65–82%). Although the extracting ability of
the new macrocycles was significantly improved,
none of the compounds showed significant selectiv-
ity toward the cations. The crown ethers with a di-
phenylphosphine oxide moiety (2b, 4b) form the
strongest complexes with ammonium ion (82% and
79%, respectively). The compounds with P(O)(OEt)2

substituents (2a, 4a) revealed the highest EA values
for potassium and sodium ions; otherwise, the K� �
Na� � order was followed.� �NH � Li4

EXPERIMENTAL

The 31P, 13C, and 1H NMR spectra were obtained on
a Bruker DRX-500 instrument at 202.4, 125.7, and
500 MHz, respectively. The FAB measurements were
performed on a ZAB-2SEQ spectrometer.

The starting macrocycles (1 and 3) were pre-
pared as described earlier [7,8].

General Procedure for the Diacylation of
bis(Methyl-�-D-glucopyranoside)-18-crown-6 1
and 3

To 0.20 g (0.38 mmol) of macrocycle 1 or 3 in 15 mL
of dry pyridine was added dropwise 0.11 mL (0.78
mmol) of (EtO)2P(O)Cl or 0.15 mL (0.78 mmol) of
Ph2P(O)Cl, and the mixture was stirred at room tem-
perature for 24 hours. The solvent was evaporated
and the so obtained residue was extracted with 40
mL of chloroform. The semicrystalline material ob-
tained after concentration in vacuo was filtered
through a 5 mm silica gel layer using 3% methanol
in chloroform eluant to give the products (2a,b and
4a,b) as syrups after careful evaporation.

Product 2a: Yield, 81%; 31P NMR (CDCl3) d
�0.34; 13C NMR, Table 1; 1H NMR (CDCl3) d 1.34 (t,

J � 7.0, 12H, OCH2CH3), 3.41 (s, 6H, OCH3), 4.05–
4.18 (m, OCH2CH3, overlapped by C(10)H, total in-
tensity 10H), 4.83 (bs, 2H, C(1)H); FAB, 801 (M�H).

Product 2b: Yield, 85%; 31P NMR (CDCl3) d 24.3;
13C NMR, Table 1; 1H NMR (CDCl3) d 3.39 (s, 6H,
OCH3), 4.13–4.19 (m, 2H, C(10)H), 4.80 (d, J � 3.2,
2H, C(1)H), 7.33–7.78 (m, 20H, Ar); FAB, 929
(M�H); HR-FAB, � 929.3095, C46H59O16P2 re-�Mfound

quires 929.3278.
Product 4a: Yield, 84%; 31P NMR (CDCl3) d

�0.49; 13C NMR, Table 1; 1H NMR (CDCl3) d 1.32 (t,
J � 7.0, 12H, OCH2CH3), 3.39 (s, 6H, OCH3), 4.0–
4.12 (m, OCH2CH3 overlapped by C(10)H, total in-
tensity 10H), 4.78 (d, J � 3.2, 2H, C(1)H); FAB, 801
(M�H).
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Product 4b: Yield, 82%; 31P NMR (CDCl3) d 26.3;
13C NMR, Table 1; 1H NMR (CDCl3) d 3.41 (s, 6H,
OCH3), 4.15–4.22 (m, 2H, C(10)H), 4.80 (d, J � 3.1,
2H, C(1)H), 7.35–7.80 (m, 20H, Ar); FAB, 929
(M�H).
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